POTENSI SENYAWA AKTIF BUNGA, KULIT DAUN DAN GETAH Aloe barbadensis Miller. TERHADAP PENGHAMBATAN ENZIM TYROSINASE

Authors

  • Nur Aji Jurusan Farmasi, Poltekkes Kemenkes Tasikmalaya, Jawa Barat, Indonesia

DOI:

https://doi.org/10.36423/pharmacoscript.v1i2.106

Abstract

Pada penelitian ini dilakukan simulasi penambatan molekul senyawa-senyawa aktif pada bunga, kulit daun dan getah tanaman Aloe barbadensis Miller . Simulasi ini bertujuan untuk memprediksi interaksi antara senyawa ligan uji dan protein yang menyebabkan terganggunya pembentukan melanin melalui interaksi kompetitif dengan enzim tirosinase. Simulasi penambatan molekul dilakukan menggunakan program Molegro Virtual Docker 6.0 dan prediksi permeabilitas dan sensitisasi kulit dengan pkCSM. Sebagai reseptor target digunakan struktur 3D protein 5M8P (tirosinase) dan ligan referensi TYR_516 (L-tirosin) yang diunduh dari Protein Data Bank. Posisi penambatan dilakukan pada koordinat yang sama dengan posisi ligan referensi yang sudah tertambat sebelumnya dan tervalidasi. Dari hasil simulasi diketahui bahwa dari 32 senyawa aktif dalam kulit daun, bunga dan getah aloe vera secara in silico terdapat tujuh senyawa yang potensial yang memiliki efek penghambatan tirosinase yaitu Aloesin, Cafeic Acid, Ferulic Acid, Galic Acid, Gentisic Acid, Protocathecuic Acid dan Sinapic Acid sedangkan berdasarkan energi interaksi potensi terbesar adalah Caffeic Acid.Kata kunci :Aloe barbadensis, Molegro, Enzim, Tirosinase, pkCSM.

References

Ando, H. et al. (2007) ‘Approaches to identify inhibitors of melanin biosynthesis via the quality control of tyrosinase’, Journal of Investigative Dermatology. Elsevier Masson SAS, 127(4), pp. 751–761.

Arifianti, A. E., Anwar, E. and Nurjanah (2017) ‘Aktivitas Penghambatan Tirosinase dan Antioksidan Serbuk Rumput Laut dari Sargassum plagyphyllum Segar dan Kering’, Jurnal Pengolahan Hasil Perikanan Indonesia, 20(3), pp. 488–493.

Bhuvana, K. B., Hema, N. G. and Patil, R. T. (2014) ‘Review on aloe vera’, International Journal of Advanced Research (2014), 2(3), pp. 677–691.

Debnath, T. et al. (2017) ‘Identification of phenolic constituents and antioxidant activity of Aloe barbadensis flower extracts’, Food and Agricultural Immunology, 0105(1), pp. 1–12.

Ebanks, J. P., Wickett, R. R. and Boissy, R. E. (2009) ‘Mechanisms regulating skin pigmentation: The rise and fall of complexion coloration’, International Journal of Molecular Sciences, 10(9), pp. 4066–4087.Firdayani, Kusumaningrum, S. and Miranti, Y. R. (2017) ‘Potensi Senyawa Bioaktif Tanaman Genus Phyllanthus Sebagai Inhibitor Replikasi Virus Hepatitis B’, JurnalBioteknologi dan Biosains Indonesia, 4(2), pp. 85–95.

Hamman, J. H. (2008) ‘Composition and applications of Aloe vera leaf gel’, Molecules, 13(8), pp. 1599–1616.

Hindritiani, R. et al. (2013) ‘Penurunan Aktivitas Tirosinase dan Jumlah Melanin oleh Fraksi Etil Asetat Buah Malaka ( Phyllantus emblica ) pada Mouse Melanoma B16 Cell-Line Reduction of Tyrosinase Activity and Melanin Amount by Ethyl Acetate Fraction from Malaka ( Phyllanthus emblica’, Majalah Kedokteran Bandung, 45(2), pp. 118–124.

International Agency for Research (2016) Some Drugs and Herbal Products Vol. 108, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Available at: https://monographs.iarc.fr/ENG/Monographs/vol108/mono108-01.pdf.

Kumar, D., Parida, S. and Dey, A. (2016) ‘Comparative HPTLC analysis of bioactive marker barbaloin from in vitro and naturally grown Aloe vera’, Revista Brasileira de Farmacognosia. Sociedade Brasileira de Farmacognosia, 26(2), pp. 161–167.

López, A. et al. (2013) ‘Phenolic constituents, antioxidant and preliminary antimycoplasmic activities of leaf skin and flowers of Aloe vera (L.) Burm. f. (syn. A. barbadensis Mill.) from the Canary Islands (Spain)’, Molecules, 18(5), pp. 4942–4954. doi: 10.3390/molecules18054942.

Meiliana Charissa, Joshita Djajadisastra, B. E. (2016) ‘Uji Aktivitas Antioksidan dan Penghambatan Tirosinase serta Uji Manfaat Gel Ekstrak Kulit Batang Taya ( Nauclea subdita ) terhadap Kulit’, Jurnal Kefarmasian Indonesia, 6(2), pp. 98–107.

Pandey, A. and Singh, S. (2016) ‘Aloe Vera: A Systematic Review of its Industrial and Ethno-Medicinal Efficacy’, International Journal of Pharmaceutical Research and Allied Sciences, 5(1), pp. 21–33.

Pires, D. E. V., Blundell, T. L. and Ascher, D. B. (2015) ‘pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures’, Journal of Medicinal Chemistry, 58(9), pp. 4066–4072.

Pires, D. E. V, Blundell, T. L. and Ascher, D. B. (2015) pkCSM : predicting small-molecule pharmacokinetic properties using graph-based signatures (Theory- How to Enterpret pkCSM Result), pKCSM. Available at: http://biosig.unimelb.edu.au/pkcsm/theory (Accessed: 9 June 2018).

Raksha, B. (2014) ‘Bioactive Compounds and Medicinal Properties of Aloe Vera L.: An Update’, Journal of Plant Sciences (Science Publishing Group), 2(3), p. 102.

Sandeep, K. and Yadav, J. P. (2014) ‘Ethnobotanical and pharmacological properties of Aloe vera: a review’, Journal of Medicinal Plants Research, 8(48), pp. 1387–1398.

Toropov, A. A., Toropova, A. P. and Benfenati, E. (2009) ‘Simplified molecular input line entry system-based optimal descriptors: Quantitative structure-activity relationship modeling mutagenicity of nitrated polycyclic aromatic hydrocarbons’, Chemical Biology and Drug Design, 73(5), pp. 515–525.

Yamaguchi, Y., Brenner, M. and Hearing, V. J. (2007) ‘The regulation of skin pigmentation’, Journal of Biological Chemistry, 282(38), pp. 27557–27561.

Downloads

Published

2019-08-26